\tag{1}\tag{650} 303 1165 *⊠ kevin@schmidtparty.com* Revinschmidt24799

Kevin Schmidt

I am a pure math graduate student interested in spectral graph theory, linear algebra, combinatorics and representation theory.

Edu	cation
Lau	cation

2024–2026 M.A. in Mathematics, San Jose State University, GPA 3.9

Thesis title: Upper Bounds on Third Eigenvalues of Graphs

2023–2024 B.A. in Mathematics, San Jose State University, GPA 3.9

2021–2023 A.A. in Mathematics, Foothill Community College, GPA 3.6

Awards

2025 Franklin B. Fuller Scholarship

2025 Hearthstone Summer Championship Qualifier

2024-2025 SJSU President's Scholar

2023-2024 SJSU President's Scholar

2024 SJSU Magna Cum Laude, Latin Honor & Medallion

2023 SJSU Richard C. Dickmann Scholarship for Academic Excellence

Research Experience

8/2025 - Master's Thesis with Professor Wasin So in spectral graph theory, SJSU

present O Working on bounding the third largest eigenvalue of graphs and characterizing extremal examples. A result of Powers claims that $\lambda_3(G) < |G|/3$ but this had an error and remains open.

- O Found families of graphs which cannot serve as counterexamples.
- O Proved eigenvalue bounds and structural properties that a counterexample graph must have, including restrictions on their automorphism groups.

1/2024 - Research with Professor Bering in geometric group theory, SJSU

- 5/2024 O Successfully proved no finite cover of the fundamental group of the figure 8 knot complement $\pi_1(4_1)$ has a Dehn complex that is special. This was known only for covers of index greater than 10.
 - O Computationally evaluated cube complexes for osculation.
 - O Wrote an exhaustive search in Python using the low index module.

Work Experience

8/2024 - Graduate Teaching Associate for Discrete Mathematics, SJSU

12/2024 O I worked as a graduate teaching associate, designing and running workshops (support classes) for undergraduate discrete math students.

- This included compiling suitable practice problems that reinforced core concepts while developing students' proof and exposition skills.
- O I received a 5/5 rating from my students; feedback included "He was very helpful and went deep into the concept he was explaining", "he would explain it – and make sure I understood", and "This instructor was frequently accessible on Discord".

8/2020 - Private Mathematics Tutor

8/2024 O Independently, I worked as a private tutor for middle and high school students, teaching geometry, trigonometry, calculus, and competition math. I had both advanced and remedial students, so I had to diagnose students' specific capabilities and gaps to adjust my approach accordingly.

Other skills

Fluent in both English and Mandarin Skilled with Python, C/C++, LaTeX, Git

Research-related software projects

Fast Graph Eigenvalue Search

- This was a highly-optimized C++ search of all 165 billion 12-vertex graphs unique up to isomorphism. It took 33 hours to run on a Macbook Pro M2.
- O https://github.com/kevinschmidt24799/12-vertices-large-third-eig/blob/ main/RESULTS.md

Blowup Search

- \circ This Python program searched graphs with a threefold or fivefold symmetry. More precisely, Graphs G such that $\operatorname{Aut}(G)$ contained an element of order 3 or 5 respectively. For such graphs, it evaluated if the closed blowup of the graph $G^{[t]}$ could have large third eigenvalue.
- O https://github.com/kevinschmidt24799/blowup-sym

Covers of Figure-8 Knot Complement

- O With Professor Edgar Bering, I wrote a Python program which searched small covers of the fundamental group of the figure-8 knot complement. For covers of index at most 10, we checked the Dehn cell complex for different types of osculation and characterized whether the cover was special.
- O https://github.com/ebering/figure-8-covers

Math coursework

Spring 0006	Higher Algebra II (Math 221B), Edgar Bering	Planned
1 0	Advanced Complex Variables (Math 238), Jordan Schettler	Planned
Spring 2026	Research Seminar (Math 281), Jordan Schettler	Planned
Spring 2026	Master's Thesis (Math 299), Wasin So	Planned
Fall 2025	Higher Algebra I (Math 221A), Edgar Bering	In progress
Fall 2025	Topology (Math 275A), <i>Yan Zhang</i>	In progress
Fall 2025	Master's Thesis (Math 299), Wasin So	In progress
Spring 2025	Functional Analysis (Math 231B), Slobodan Simic	A+
Spring 2025	Theory of Numbers (Math 226), Jordan Schettler	A+
Spring 2025	Guided Graduate Individual Studies (Math 280), Wasin So	P
Spring 2025	Advanced Topics in Mathematics (Math 285M), Wasin So	A
Fall 2024	Graph Theory (Math 279A), Yan Zhang	A+
Fall 2024	Real Analysis (Math 231A), Slobodan Simic	A
Fall 2024	Advanced Matrix Theory (Math 229), Wasin So	A-
Spring 2024	Theory of Numbers (Math 126), Jordan Schettler	A+
Spring 2024	Abstract Algebra II (Math 128B), Edgar Bering	A
Spring 2024	Introduction to Analysis (Math 131A), Timothy Hsu	A
Spring 2024	Linear Algebra II (Math 129B), Wasin So	A-
Spring 2024	Undergraduate Research (Math 180R), Edgar Bering	P
Fall 2023	Introduction to Graph Theory (Math 179), Wasin So	A
Fall 2023	Applied Probability and Statistics (Math 161A), Cristina Tortora	A
Fall 2023	Introduction to Combinatorics (Math 142), Wasin So	A
Fall 2023	Abstract Algebra I (Math 128A), Edgar Bering	A
Spring 2023	Intro to Abstract Math and Proofs (Math 108), Kyle Hambrook	A-
Fall 2022	Complex Variables (Math 138), Giang Le	A

Math coursework (with textbook and descriptions)

Spring 2026 Higher Algebra II (Math 221B), Edgar Bering

Planned

• Text: Algebra: Chapter o, Paolo Aluffi Description: Hilbert spaces, Banach algebras, operator theory, spectral theory of operators.

Spring 2026 Advanced Complex Variables (Math 238), Jordan Schettler

Planne

O Description: A course specializing in one or more of the advanced branches of the theory of complex functions.

Spring 2026 Research Seminar (Math 281), Jordan Schettler

Planne

Description: Weekly participation in the department research seminar. Topics will focus
on recent developments in mathematics and emphasis will be placed on written and oral
presentations.

Spring 2026 Master's Thesis (Math 299), Wasin So

Planned

O Continuation of Master's thesis.

Fall 2025 Higher Algebra I (Math 221A), Edgar Bering

In progress

O Text: Algebra: Chapter o, Paolo Aluffi

O Description: Category theoretical approach to groups, rings, integral domains, modules, fields, vector spaces. Products, coproducts, kernels, cokernels, quotients as universal properties, exact sequences, split sequences, the snake lemma.

Fall 2025 Topology (Math 275A), Yan Zhang

In progress

- O Text: Topology without Tears, Sidney A. Morris
- Description: Topological spaces and associated concepts (e.g., subspaces, product spaces, quotient spaces); continuous functions; compactness, connectedness (including path connectedness) and their local versions; countability and separation axioms; compactifications and Tychonoff's Theorem; paracompactness and metrization theorems.

Fall 2025 Master's Thesis (Math 299), Wasin So

In progress

O Description: Spectral graph theory, working on bounding the third largest eigenvalue of graphs and characterizing extremal examples. A result of Powers claims that this eigenvalue is at most a third of the graph order, but this had an error. Found new families of graphs which cannot serve as counterexamples, and eigenvalue bounds that a theoretical counterexample graph must have.

Spring 2025 Functional Analysis (Math 231B), Slobodan Simic

A+

- O Text: Introduction To Hilbert Spaces with Applications, Lokenath Debnath
- O Description: Function spaces and their duals, operators on function spaces, Hilbert spaces, Banach algebras, operator theory, spectral theory of operators

Spring 2025 Theory of Numbers (Math 226), Jordan Schettler

A+

- O Text: Introduction to Analytic Number Theory, Tom M. Apostol
- O Description: Prime number theorem, Mobius inversion, Riemann zeta function, Dirichlet series, L function, Circle method, projective plane, partitions.

Spring 2025 Guided Graduate Individual Studies (Math 280), Wasin So

P

- O Text: The Probabilistic Method, Spencer & Alon. Additive Combinatorics, Tao & Vu
- O Description: Individual study in a specific field. The probabilistic method, extremal graph theory, Ramsey theory, additive combinatorics, discrete isoperimetric problems.

Spring 2025 Advanced Topics in Mathematics (Math 285M), Wasin So

Α

- O Topic: Nonnegative Matrix Theory and Applications
- O Text: Matrix Analysis, Horn and Johnson
- Description: Perron Frobenius theory of positive, primitive, irreducible, and nonnegative matrices, M matrices, eigenvalue bounds, spectral graph theory, spectral moments.

Fall 2024 Graph Theory (Math 279A), Yan Zhang

A+

- O Text: Introduction to Graph Theory, Douglas B. West
- Description: Graphs, digraphs, trees, graph embeddings, matchings, spanning trees, topological sorts, factorizations, colorings, Ramsey theory, spectral graph theory, adjacency and Laplacian matrices

- Text: Real Analysis: Measure Theory, Integration, and Hilbert Spaces (Princeton Lectures in Analysis), Stein and Shakarchi
- Description: Sigma algebras, construction of measures, Lebesgue measure, measurable functions, differentiation, integration theory, convergence theorems, Riesz representation theorem, probability theory.

Fall 2024 Advanced Matrix Theory (Math 229), Wasin So

A-

- O Text: Matrix Analysis, Horn and Johnson
- Description: Eigenvalues, unitary equivalence and Schur's theorem. Normal, Hermitian and symmetric real matrices. Positive definite matrices, polar and singular value factorizations, and selected topics at the discretion of the instructor.

Spring 2024 Theory of Numbers (Math 126), Jordan Schettler

A+

- O Text: Elementary Number Theory, David M. Burton
- Description: Divisibility, prime numbers, congruences of first and higher degrees, theorems of Fermat, Euler and Wilson. Quadratic residues.

Spring 2024 Abstract Algebra II (Math 128B), Edgar Bering

Α

- O Text: Discovering Abstract Algebra, John K. Osoinach Jr.
- O Description: Emphasis on rings, integral domains, fields, field extensions, Galois theory.

Spring 2024 Introduction to Analysis (Math 131A), Timothy Hsu

Α

- O Text: Elementary Analysis: The Theory of Calculus, Kenneth A. Ross
- Description: Properties of real numbers including completeness and compactness. Continuous functions, uniform continuity, the derivative.

Spring 2024 Linear Algebra II (Math 129B), Wasin So

Α-

- O Text: Linear Algebra, Friedberg, Insel, and Spence
- Description: Continuation of MATH 39. Abstract vector spaces and linear transformations, diagonalization, Cayley-Hamilton theorem, minimal polynomials, Jordan canonical form. Selected topics from inner product and adjoint, duality, rational canonical form and applications.

Spring 2024 Undergraduate Research (Math 180R), Edgar Bering

P

- Text: The Symmetries of Things, John H. Conway. Office Hours with a Geometric Group Theorist, Clay and Margalit
- O Description: Met weekly with the professor. Explored group theory, fundamental groups, knots, Dehn complexes, flag complexes, special covers. Wrote a Python program to successfully prove a novel result via computation.

Fall 2023 Introduction to Graph Theory (Math 179), Wasin So

Α

- O Text: Introduction to Graph Theory, Robin Wilson
- Description: Hamiltonian and Eulerian properties, matching, trees, connectivity, coloring problems and planarity. Emphasis on algorithms and applications, including optimal network flows.

Fall 2023 **Applied Probability and Statistics (Math 161A)**, Cristina Tortora

Α

- O Text: Professor's slides and notes
- Description: Descriptive and inferential statistics. Collection and analysis of data, discrete and continuous probability models, random variables, Central Limit Theorem, confidence intervals, hypothesis testing.

Fall 2023 Introduction to Combinatorics (Math 142), Wasin So

Α

- $\,\circ\,$ Text: Applied Combinatorics, Alan Tucker
- Description: Sets, permutations, combinations, probability, mathematical induction, counting techniques, generating functions, partitions, recurrence relations, inclusionexclusion. Polya's theorem and applications to computer science, mathematics, engineering and physical sciences.

Fall 2023 Abstract Algebra I (Math 128A), Edgar Bering

A

- O Text: Discovering Abstract Algebra, John K. Osoinach Jr.
- Description: Group theory: permutation groups, abelian groups, morphism theorems, finite groups. Introduction to rings and fields.

Spring 2023 Intro to Abstract Math and Proofs (Math 108), Kyle Hambrook

- O Text: Assorted materials assembled by professor
- O Description: Develop students' mathematical maturity and skill with proofs.
- Material includes logic; set theory including functions, relations, and cardinality; the real number system, including the completeness axiom; and selected topics.

Fall 2022 Complex Variables (Math 138), Giang Le

A

Α-

- O Text: Fundamentals of Complex Analysis, Saff and Snider
- O Description: Analytic functions, complex integration, residues and power series.